COVID-19: We provide to the DockThor users structures of COVID-19 potential targets already prepared for docking at the Protein tab. New targets and structures will be available soon.

Guedes, I. A. et al. Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci Rep 11, 5543 (2021).

Welcome to DockThor

A Free Web Server for Protein-ligand Docking

Home picture


Generic placeholder image

Protein

Add missing hydrogen atoms, complete side chains, change protonation states. Simple and easy!

Generic placeholder image

Small molecules

Add hydrogen atoms (pH 7), freeze rotatable bonds, get MMFF94S atom types and partial charges. Fast and automatic!

Generic placeholder image

Cofactors

Consider cofactors and structural waters on virtual screening experiments with automatic MMFF94S parametrization.

Generic placeholder image

Redocking

Validate docking protocol with redocking experiments. We provide the RMSD between reference and docked poses.

Generic placeholder image

Blind Docking

Searching for binding sites? Perform blind docking on the entire protein and find cavities!

Generic placeholder image

Virtual Screening

Perform large scale docking experiments exploring multiple binding modes. Dock them all!



Interactive Analyses. Explore docking poses and predict affinity.

Investigate different binding modes and predict binding affinities. Visualize predicted complexes with JSMol.

500x500


500x500

SDumont Supercomputer. Virtual screening experiments even faster.

Run virtual screening experiments at Santos Dumont supercomputer, located at LNCC, Petrópolis - Brazil.


  1. Upload your protein file

    Add file Add file
    File name Size Status Actions
    {{$parent.protein.name}} {{$parent.protein.size/1024 | number : 2}} KB
    {{$parent.protein.error}}
    File name Size Status Actions

    {{file.name}} {{file.name}} {{file.name}}

    {{file.size | formatFileSize}}

  2. Select the protonation states

    Chain {{ chainKey }}
    • {{ atomKey }}
      Residue index Residue number Protonation state
      {{indexKey}} {{indexValue.state.index}}
      -



    Modification log
    • Chain {{proteinEditLog[key]['chain']}}: {{proteinEditLog[key]['atom']}} {{proteinEditLog[key]['index']}} was set as {{proteinEditLog[key]['after']}}

    * This area is just avaliable with 'pdb' files

  3. Prepared protein file

  1. Upload your ligand file

    * Attention: some datasets are available exclusively for approved projects and registered users. You can sign up submiting your project at the Login tab.
    Resource
    {{resource}}
    # File name Size Add H Status Actions
    {{($index+1)}}

    {{file.name}} {{file.name}} {{file.name}}

    {{file.size | formatFileSize}}


    Valid structures: {{totalValidStructures}} (max. {{roleStructureValid}})
    Valid structures: {{totalValidStructures}} (max. {{roleStructureValid}})
    The number of valid structures exceeds the limit allowed

    loading ...
    Sorry, the following files have the same content:
    • Same content: {{ivalue['originalName']}},

  2. Rotatable bond editor


    Rotatable bonds: {{getRotbCount(rotbElements)}}
    # Atom 1 Atom 2 Disable/Enable
    {{$index + 1}} {{value[3]}}{{value[0]}} {{value[4]}}{{value[1]}}

    Disable/Enable all:



    Modification log
    • Bond {{value[0]}} - {{value[1]}} set as rigid Bond {{value[0]}} - {{value[1]}} set as flexible

    * This area is just avaliable when working with one valid ligand (pdb, sdf or mol2)

  3. Prepared ligand file

    Send to DockThor
  1. Upload your cofactor file

    Add file Add file

    Or

    File name Size Add H Status Actions

    {{file.name}} {{file.name}} {{file.name}}

    {{file.size | formatFileSize}}


    Valid structures: {{totalValidStructures}} (max. {{roleStructureValid}})
    Valid structures: {{totalValidStructures}} (max. {{roleStructureValid}})
    The number of valid structures exceeds the limit allowed (i.e., 10 molecules).
    Sorry, the following files have the same content:
    • Same content: {{ivalue['originalName']}},

  2. Prepared cofactor file

    Send to DockThor
  1. Check your docking input files

    • Protein ( 1 )
      • {{$parent.proteinInput.codedName}}
    • Ligand ( {{getLigandTotalStructures()}} )
      • {{ligand.fileIdWithExtension}} ( {{ligand.validStructure}} )
    • Cofactor ( {{getCofactorTotalStructures()}} )
      • {{cofactor.fileIdWithExtension}} ( {{cofactor.validStructure}} )
  2. Define the binding site

    Grid center:

    X:

    Y:

    Z:

    Grid size:

    X:

    Y:

    Z:

    Discretization:

    Total grid points:

    {{points}}

    Protein

    Cofactors

  3. Select the search algorithm precision

    Number of Evaluations:

    Population Size:

    Initial Seed:

    Number of Runs:

    Soft Docking

  4. Identify your docking job

    (success)
    (success)

    Subscribe DockThor e-Newsletters

    Accept terms of use


  1. Select the parameters for analyses of docking results:

    RMSD to cluster conformers :

    Number of binding modes :

    Compare docking poses with a reference conformation?


  2. Analyze your docking results:


    Rank Compound Affinity Total Energy vdW Energy Electrostatic Energy RMSD
    {{$index + 1}} {{item.name}} {{item.poses[0].score}} {{item.poses[0].tenergy}} {{item.poses[0].vdw}} {{item.poses[0].coul}} {{item.poses[0].rmsd}}
    run{{pose.run}}_model{{pose.model}} {{pose.score}} {{pose.tenergy}} {{pose.vdw}} {{pose.coul}} {{pose.rmsd}}

    Protein

    Reference Ligand

    Cofactors

  1. Job Status

    Job id: {{job.id}}
    Job Status: {{job.status}}






    Job id "{{job.id}}" not found

References

Citing Us

  • Guedes, I. A.; Pereira da Silva, M. M.; Galheigo, M.; Krempser, E.; de Magalhães, C. S.; Correa Barbosa, H. J.; Dardenne, L. E. DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening. Journal of Molecular Biology 2024, 168548. https://doi.org/10.1016/j.jmb.2024.168548.

  • Guedes, I. A.; Barreto, A. M. S.; Marinho, D.; Krempser, E.; Kuenemann, M. A.; Sperandio, O.; Dardenne, L. E.; Miteva, M. A. New Machine Learning and Physics-Based Scoring Functions for Drug Discovery. Sci Rep 2021, 11 (1), 3198. https://doi.org/10.1038/s41598-021-82410-1.

    Download the curated PDBbind core set v.2013 data set here

  • K. B. dos Santos, I. A. Guedes, A. L. M. Karl, and L. Dardenne. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-peptide Dataset, J. Chem. Inf. Model., Jan. 2020, doi: 10.1021/acs.jcim.9b00905.

    Download the LEADS-PEP data set here

  • C. S. de Magalhães, D. M. Almeida, H. J. C. Barbosa, and L. E. Dardenne, A dynamic niching genetic algorithm strategy for docking highly flexible ligands, Information Sciences, vol. 289, pp. 206–224, Dec. 2014, doi: 10.1016/j.ins.2014.08.002.

  • When using any SARS-CoV-2 target or drug repurposing datasets, please cite the following article:

  • Guedes, I. A. et al. Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci Rep 11, 5543 (2021).

Other Articles

  • I. A. Guedes, F. S. S. Pereira, and L. E. Dardenne, Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges, Front. Pharmacol., vol. 9, pp. 1–18, 2018, doi: 10.3389/fphar.2018.01089.

  • I. A. Guedes, C. S. de Magalhães, and L. E. Dardenne, Receptor–ligand molecular docking, Biophysical Reviews, vol. 6, no. 1, pp. 75–87, Mar. 2014, doi: 10.1007/s12551-013-0130-2.

  • C. S. de Magalhães, H. J. C. Barbosa, and L. E. Dardenne, Selection-Insertion Schemes in Genetic Algorithms for the Flexible Ligand Docking Problem, in Genetic and Evolutionary Computation – GECCO 2004, vol. 3102, K. Deb, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 368–379.

  • C. S. de de Magalhães, H. J. C. Barbosa, and L. E. Dardenne, A genetic algorithm for the ligand-protein docking problem, Genetics and Molecular Biology, vol. 27, no. 4, pp. 605–610, 2004, doi: 10.1590/S1415-47572004000400022.

Thesis

  • Isabella Alvim Guedes. Development of Empirical Scoring Functions for Predicting Protein-ligand Binding Affinity. D.Sc. Thesis, Laboratório Nacional de Computação Científica/Brasil, 2016.

  • Diogo Marinho Almeida. Dockthor: Implementação, Aprimoramenteo e Validação de um Programa de Docking Receptor-Ligante. M.Sc. Thesis, Laboratório Nacional de Computação Científica/Brasil, 2011.

  • Camila Silva de Magalhães. Algoritmos Genéticos para o Problema de Docking Proteína-Ligante. D.Sc. Thesis, Laboratório Nacional de Computação Científica/Brasil, 2006.

DockThor Team

Laurent Emmanuel Dardenne

Dr.Sci. in Biophysics
Grupo de Modelagem Molecular de Sistemas Biológicos
Laboratório Nacional de Computação Científica (LNCC-MCTI)
E-mail: dardenne@lncc.br

Lattes: http://lattes.cnpq.br/8344194525615133

Hélio José C. Barbosa

D.Sc. in Civil Engineering
Grupo de Metaheurísticas Inspiradas na Natureza e Aplicações
Laboratório Nacional de Computação Científica (LNCC-MCTI)
E-mail: hcbm@lncc.br

Lattes: http://lattes.cnpq.br/0375745110240885

Camila Silva de Magalhães

D.Sc. in Computational Modelling
Universidade Federal do Rio de Janeiro (UFRJ)
E-mail: camila.mag@gmail.com

Lattes: http://lattes.cnpq.br/5956779016222823

Diogo Marinho Almeida

D.Sc. Student in Biotecnology
Universidade Federal do Pará (UFPA)
E-mail: diogo.marinho@gmail.com

Lattes: http://lattes.cnpq.br/2956577623367895

Eduardo Krempser da Silva

D.Sc. in Computational Modelling
Grupo de Metaheurísticas Inspiradas na Natureza e Aplicações
Fundação Oswaldo Cruz (Fiocruz)
E-mail: eduardo.krempser@fiocruz.br

Lattes: http://lattes.cnpq.br/5399601756512708

Fábio Lima Custódio

Dr.Sci. in Computational Modeling
Grupo de Modelagem Molecular de Sistemas Biológicos
Laboratório Nacional de Computação Científica (LNCC-MCTI)
E-mail: flc@lncc.br

Lattes: http://lattes.cnpq.br/9126339190151859

Isabella Alvim Guedes

D.Sc. in Computational Modelling
Grupo de Modelagem Molecular de Sistemas Biológicos
Laboratório Nacional de Computação Científica (LNCC-MCTI)
E-mail: isabella@lncc.br

Lattes: http://lattes.cnpq.br/2265756121721735

SINAPAD Team

Antônio Tadeu Azevedo Gomes

Dr.Sc. in Computer Science
Laboratório Nacional de Computação Científica (LNCC-MCTI)
E-mail: atagomes@lncc.br

Lattes: http://lattes.cnpq.br/8326803963394077

Marcelo Monteiro Galheigo

Technologist in Information and Communication Technology
Laboratório Nacional de Computação Científica (LNCC-MCTI)
E-mail: galheigo@lncc.br

Lattes: http://lattes.cnpq.br/8936826427650220

Vívian Medeiros

M.Sc. in Computational Modelling
Laboratório Nacional de Computação Científica (LNCC-MCTI)
E-mail: vivian@lncc.br

Lattes: http://lattes.cnpq.br/9244696980224618

Help

Tutorial Files

Redocking

Tutorial 1HPV - Download 1hpv_ligand.pdb

Contact Us

New Features


General


  • 04/27/2020 - Three-dimensional structures now are visualized with the NGL Viewer.
  • 04/10/2020 - New redocking Tutorial with new test files available (download the tutorial at Support -> Help).
  • 01/24/2020 - Download of the curated LEADS-PEP data set is available in the References tab.

Protein


  • 26/01/2024 - Modelled structure of human TMPRSS2 (template PDB code 6t7p) available in the dataset of COVID-related targets.
  • 06/08/2020 - Curated structures of relevant therapeutic targets of SARS-CoV-2 are now available. The dataset will be constantly updated with new structures (wild type and selected mutations).
  • 04/27/2020 - Neutral cisteine (CYSH) set as the default protonation state.
  • Hydrogen atoms added to the protein with external tools (e.g. Maestro, Protoss, PDB2PQR) are automatically recognized and the residues protonation states are identified. Residues protonation states could also be modified later.
  • Download options:
    • Prepared file (.pdb) containing the prepared protein file with the final protonation states and polar hydrogen atoms added.
    • Topology file(s) (.in) for the uploaded target protein.
    • Compacted folder (.zip) with all input and output files.
  • Bug fixes.

Cofactors


  • Upload up to 10 cofactor files.
  • MOL2 and SDF format files are now accepted in addition to the PDB and TOP types.
  • Download options:
    • Map file (.csv) containing the relationship between the original file names and random IDs provided by DockThor.
    • Topology file(s) (.top) for the uploaded compounds.
    • Compacted folder (.zip) with all input and output files.
  • Bug fixes.

Ligands


  • 01/08/2024 - Virtual screening operating at reduced capacity temporarily: up to 100 small molecules as guest user and up to 1,000 compounds as registered user.
  • 29/01/2024 - Virtual screening with up to 1,000 small molecules as guest user.
  • 29/01/2024 - Virtual screening now with up to 10,000 small molecules as registered user.
  • 26/01/2024 - Curated e-Drug3D (version June 2023) datasets for drug repurposing at reference, low and high pH are now available.
  • 08/12/2020 - Curated datasets for drug repurposing at reference pH are now available! New datasets will be available soon.
  • 08/12/2020 - Virtual screening with up to 200 small molecules as guest user.
  • 05/22/2020 - Virtual screening now with up to 5000 small molecules as registered user.
  • 01/17/2020 - Dock highly flexible ligands such as peptides with up to 40 residues and 60 dihedrals.
  • Upload single or multiple structures file (only available for MOL2 and SDF files).
  • Compounds are filtered to remove invalid structures:
    • Molecular weight > 1500 Da;
    • Rotatable bonds > 60;
    • 2D structure;
    • At least one atom type not recognized by the MMFF94S force field.
  • Recovery the original file names with the table mapfile.csv.
  • Enable/disable all rotatable bonds with just one click.
  • Calculate compound properties with Obprop/OpenBabel (provided in table obprop.csv).
  • Download options:
    • Map file (.csv) containing the relationship between the original file names and random IDs provided by DockThor.
    • Properties table (s) (.csv) containing the compounds properties calculated by Obprop/OpenBabel.
    • Topology file(s) (.top) for the uploaded compounds.
    • Compacted folder (.zip) with all input and output files.
  • Bug fixes.

Docking


  • 04/27/2020 - The input grid size on each dimension corresponds now to the total size of the grid box on each axis (instead of the half value).
  • 04/10/2020 - Blind docking option that centers the energy grid at the center of mass of the protein and defines the grid dimensions to cover the entire protein (or the maximum size allowed). Attention: experimental, use it with caution.
  • 01/24/2020 - Softening the MMFF94S Buf-14-7 potential now available (buffering constant = 0.35).
  • Faster virtual screening with the Santos Dumont supercomputer:
    • Minutes for screening up to 200 compounds;
    • Few hours for screening up to 5000 molecules.
  • Summary of uploaded files.
  • Iterative configuration of the grid integrated with the protein visualization.
  • Pre-defined configurations of the search algorithm:
    • Standard: optimized configuration explored through in-house benchmarking studies.
    • Virtual screening: faster protocol for screening compound databases with good accuracy.
    • Explorer: change the parameters as you wish (only available for docking with up to 100 compounds).
  • Receive the e-mail with the results in up to five addresses.
  • Subscribe DockThor e-Newsletters to receive DockThor news.
  • Job name simplified to label + random ID.
  • An e-mail is sent when your job is submitted and a second one when the job is finished.

Analyses


  • 04/27/2020 - Number of top-energy binding modes are limited to 3 for virtual screening and 10 for single docking experiments.
  • 04/10/2020 - Corrected the protein file *_prep.pdb in the docking compacted folder (.zip file) at the directory PROTEIN/.
  • Predict binding affinity with a new empirical scoring function composed by terms accounting for intermolecular interactions, ligand entropy, desolvation and lipophilic contacts.
  • Explore multiple binding modes even in virtual screening experiments.
  • Download your docking results:
    • Ranked compounds according to the affinity prediction (bestranking files).
    • Top-ranked binding modes for each compound after clustering (result- files).
  • Explore different clustering parameters when docking a single ligand.

Releases Notes

  • Camila Silva de Magalhães, Diogo Marinho Almeida, Hélio José Correa Barbosa, Laurent Emmnanuel Dardenne. A Dynamic Niching Genetic Algorithm Strategy for Docking of Highly Flexible Ligands. Information Sciences, 289, p. 206-224, 2014.

  • Camila Silva de Magalhães, Hélio José Correa Barbosa, Laurent Emmnanuel Dardenne. Selection-Insertion Schemes in Genetic Algorithms for the Flexible Ligand Docking Problem. Lecture Notes in Computer Science, v. 3102/2004, p. 1-12, 2004.